
3.16 User Management API Specification
Bright Pattern Documentation

Generated: 5/20/2024 6:07 pm
Content is available under license unless otherwise noted.

2
3
3
3
3
3
3
4
4
4
4
4
4
4
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
7
7
7
7

Table of Contents

Table of Contents
Purpose
Audience
General Information

Request URLs
Request Body
Tenant ID

Security and Authentication
Example

Get User Data
Request

URL
HTTP Method

Response
Create User

Request
URL
HTTP Method

Response
Update User

Request
URL
HTTP Method

Response
Get User Lock State

Request
URL
HTTP Method

Response
Clear User Lock State

Request
URL
HTTP Method

Response

Purpose
The Bright Pattern Contact Center User Management API Specification describes the methods and responses of the
User Management API, which can be used for automated user provisioning with third-party systems. For example,
if a new agent is hired, the agent's account is created in a corporate system, and at that time, the system can
invoke the API and automatically create the user in the Bright Pattern system. When an agent is terminated, for
example, the User Management API can be used to automatically delete or disable the user.

Audience
This guide is intended for the IT personnel responsible for the data infrastructure of Bright Pattern Contact Center-
based contact centers. Readers of this guide are expected to have expertise in web application development as well
as a solid understanding of contact center operations and resources that are involved in such operations.

General Information
The User Management API is a RESTful API. The HTTP POST method is used for all requests to insert or update
information, while the HTTP GET method is used to retrieve information. Request and response bodies are encoded
using JSON.

This specification describes only additional or different meanings of standard HTTP response codes. For more
information, see RFC 2616, Section 10.

Request URLs

The request URL contains information about the required action and the object name.

The base part of the URL is:

http[s]://<host>/configapi/v2

Request Body

The request body carries either the object to be inserted or the unique ID fields of the object to be queried.

Tenant ID

In a multi-tenant deployment, the tenant ID is derived from authentication login information.

For more information, see the Security and Authentication section of this specification.

http://www.ietf.org/rfc/rfc2616.txt
https://help3x.brightpattern.com/3.16:User-management-api-specification/UpdateUser?action=html-localimages-export#topic_list-management-api-specification.2FSecurityandAuthentication

Security and Authentication
HTTP digest access authentication is used to authenticate the access attempts. The provided username is checked
against the list of users configured at the contact center (tenant) level. Moreover, the session is established
provided that the supplied credentials are authenticated and that the user’s role indicates the user's authorization
to perform operations.

Standard HTTP response codes whose meaning conforms to the original specification (RFC 2616) are not discussed
in this guide. For specification of such responses, see section 10 of http://www.ietf.org/rfc/rfc2616.txt. This
document only specifies the response codes whose description deviates from the original specification (e.g., is
defined more narrowly or has a different meaning).

Example

Here is an example of how to authenticate in Python.

auth=HTTPDigestAuth('Username', 'Password')

Get User Data
Returns user data, such as name, team, extension, skills, and so forth.

Request

URL

http[s]://<host>/admin/ws/t/<tenant_url>/user/<login_id>

HTTP Method

GET

Response
{
 "loginId": "test008",
 "firstName": "test",
 "lastName": "008",
 "team": "Maintenance Renewal",
 "extension": "2072",
 "workPhone": "123456",
 "mobilePhone": "78910",
 "email": "test008@nowhere.net",
 "disabled": false,
 "changePassword": true,
 "skills": {
 "Maintenance Renewal": 100,
 "English": 33
 },
 "roles": [
 "Agent",

http://www.ietf.org/rfc/rfc2616.txt

 "Supervisor"
]
}

Create User
Creates a new user in the system.

Request

URL

http[s]://<host>/admin/ws/t/<tenant_url>/user

HTTP Method

POST

Response
{
 "loginId": "test008",
 "password": "top secret",
 "firstName": "test",
 "lastName": "008",
 "team": "Maintenance Renewal",

 "extension": "2072",
 "workPhone": "123456",
 "mobilePhone": "78910",
 "email": "test008@nowhere.net",
 "disabled": false,
 "changePassword": true,
 "skills": {
 "Maintenance Renewal": 100,
 "English": 33
 },
 "roles": [
 "Agent",
 "Supervisor"
]
}

Update User
Changes a user's password, system status (i.e., active or inactive), and skills.

Request

URL

http[s]://<host>/admin/ws/t/<tenant_url>/user/<login_id>

HTTP Method

PUT

Response
{
 "password": "top secret",
 "disabled": false,
 "changePassword": true,
 "skills": {
 "Maintenance Renewal": 100,
 "English": 33
 }
}

Get User Lock State
Checks whether a user's account has been temporarily locked out after too many invalid login attempts.

Request

URL

http[s]://<host>/admin/ws/t/<tenant_url>/user/lock/<login_id>

HTTP Method

GET

Response
{
 "lockedOut":true
}

Clear User Lock State
Resets a temporary lockout, if a user's account has been temporarily locked out after too many invalid login
attempts.

Request

URL

http[s]://<host>/admin/ws/t/<tenant_url>/user/lock/<login_id>

HTTP Method

PUT

Response
{
 "lockedOut":false
}

	Table of Contents
	Purpose
	Audience
	General Information
	Request URLs
	Request Body
	Tenant ID

	Security and Authentication
	Example

	Get User Data
	Request
	URL
	HTTP Method

	Response

	Create User
	Request
	URL
	HTTP Method

	Response

	Update User
	Request
	URL
	HTTP Method

	Response

	Get User Lock State
	Request
	URL
	HTTP Method

	Response

	Clear User Lock State
	Request
	URL
	HTTP Method

	Response

